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1 Introduction

The ability to manipulate carbon nanotubes with increasing precision has enabled a
large number of successful electron transport experiments. These studies have pri-
marily focussed on characterizing transport through both metallic and semiconducting
wires [1, 2, 3, 4, 5, 6]. Reference [1] demonstrated ballistic transport in single-wall
nanotubes for the first time, although the experimental configuration incurred large
contact resistance. Subsequently, methods of producing low contact resistances have
been developed and two terminal conductances smaller than 50k$? have been repeat-
ably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes,
reference [5] demonstrated a resistance of approximately h/2€? in a configuration where
the outermost layer made contact to a liquid metal. This was followed by the work
of reference [6] where a resistance of A/ 27¢? (approximately 478(2) was measured in a
configuration where electrical contact was macle to many layers of a multi-wall nan-
otube. References [5] and [6] note that each conducting layer contributes a conductance
of only 2e2/h, instead of the 4e?/h that a single particle mode counting picture yields.
These small resistances have been obtained in microns long nanotubes, making them
the best conducting molecular wires to date. The large concluctance of nanotube wires
stems from the fact that the crossing bands of nanotubes are robust to defect scattering
(7, 8, 9].

Transport details through CNT caps is important for many purposes. In STM
experiments, electrons tunnel from the substrate being probed to the tip of a capped or
open nanotube. Experiments in molecular electronics may also use a nanotube tethered
to metal or other parts of the circuit. For these applications, understanding the physics
of electron transport through capped nanotubes is relevant. To gain this understanding,
references [10, 11, 12, 13] analyzed the wave function and density of states of capped
nanotubes, and reference [14] recently studied the electron transmission probability
through polyhedral capped nanotubes.

In the present work, we extend previous work [14] to include the effects of an
arbitrary number of leads to the nanotube. We also examine the role of defects in
determining nanotube conductance.  In section 2 we discuss a method to calculate
the transmission through nanotubes with an arbitrary number of leads. Tn section 3,
wo review the role of defeets in determining the conductance of nanotubes at band-



center energies |7, 8, 9] and at higher energies [9]. The discussion of the role of defects
closely follows our earlier work in reference [9]. Two types of defects are discussed
here. The first is weak uniform disorder and the second is strong isolated defects.
The transmission of electrons at the band center is reasonably insensitive to the first
tvpe of defect but is greatly diminished by the second. Transmission through caps is
discussed in section 4, and this discussion closely follows our earlier work in reference
[14]. Our discussion is for polvhedral caps. The transmission is found to correspond
to the local density of states (LDOS) at all energies except those corresponding to the
localized states. Hybridization between substrate and carbon nanotube states leads
to interference paths that yield strong transmission antiresonances. The presence of
defects in the nanotube can transform these antiresonances to resonances. The current
carrying capacity of these resonances, however, depends on the location of the defects.
Conclusions of our study are presented in section 9.

2 Method
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Figure 1: Carbon nanotube in coutact with three leads: a semi-infinite carbon nanotube on the right,
and metallic leads in the center and in close proximity to the cap at the left.

In this section, we present the model and method used to analyze transport through
CNT. Figl. shows a nanotube (denoted by C) with three leads, a semi-infinite carbon
nanotube on the right, a metallic lead in the center and a substrate (denoted by S)
which is the metallic lead in close proximity to the cap at the left. Placing the metallic
lead at the center of the nanotube is akin to the experiments in reference (1], where the
metal is side-contacted to the nanotube. The transmission and LDOS are calculated
from the Green’s function of the nanotube connected to the leads. The leads are by
definition objects that are capable of injecting electrons into the device, and so are
typically modeled as either metals [15] or semi-infinite carbon nanotubes. The Green’s
function is calculated by the procedure given in references (16, 17] and [18]. The
equation governing the Green’s function is:

ET— 1l =) S | Ge(E) =1, (1)

(3]

where Fle: is the Thuniltonian of the isolated nanotube and T is the identity matrix of
size equal to the number of atoms in ¢ [17]. ©1 is the retarded self energy arising due
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to connection with lead «, and is given by,
T(E) = Ve-agal E)Vac - (2)

Ve o (Vioc) is the Hamiltonian representing the interaction between C (lead ) and
lead ¢ (C), and g7, is the Green’s function of the isolated lead. I is a square matrices
of size equal to the number of atoms in C. Note that only sub-matrices of ¥7 that
correspond to atoms in C' coupled to lead « are non-zero. Further, only those elements
of g%, that couple atoms (nodes) in « to (7 are required. The real part of the diagonal
components of TI represents the change in on-site potential of the C atoms, and the
imaginary part is responsible for injection of electrons from o to C. In general, the
off-diagonal elements of ¥ cannot be neglected, since they play an important role in
determining transport characteristics.

The single particle LDOS at site ¢ [V;(E)] and transmission probability between
leads « and 3 [T,3(E)] at energy E are obtained by solving Eq. (1) for the diagonal
element G, and the off-diagonal sub-matrix of G" in C' that couple « and 8 (17, 18]

N(E) = -~ Im{GL(E) )
Tos(E) = Trace[l G TsG] . (4)

T, = 2nVeo_olmlgh(E)]|Va_c, where Im extracts the imaginary part.

For computational efficiency and to calculate the transmission through a long
nanotube region, we divide the structure C' into N smaller units with each unit typically
representing a few rings of atoms along the circumference of the tube (Fig. 1). The
units need not necessarily be of the same size, but the main idea is to order atoms in
the units such that [ET — He — ¥, T4 is a tridiagonal block matrix,
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The advantage of casting the matrix in the block tridiagonal form is the efficiency
of matrix inversion compared to a non-tridiagonal sparse matrix [19]. If the ith unit
contains N; atoms, then the diagonal block, A; = [ET — He — Za S5l in siock 18 8 Ni by
N; square matrix. The off diagonal sub-matrix B;; represents coupling between units ¢
and 4, and is a N; by N; rectangular matrix, where Nj is the number of atoms in unit
j. Also, note that B,; is non zero only when i —j| = 1. In Eq. (4), computing T,g only
requires solving for the ofl-diagonal rectangular matrix G, ;, between units i, and 3.
io and iz are units representing carbon atoms connected to leads e and 8 respectively.
Finally, the single-particle Hamiltonian of the nanotube is {20},

I = Z(,;(:}L(t,- + Z [tij(::-r(:j + (:.(:] , (6)
I} i,j

where, ¢, is the on-site potential and ¢;; is the hopping parameter between lattice sites
i and 5. {¢], ¢} are the ercation and annihilation operators at site i. The Hamiltonian
between a nanotube (C) and metal (M) is,

ey = Z [TL,.(',T(I.,.+('.('] , (
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where, 7, is the hopping parameter between lattice sites ¢ of the nanotube and x of the
metal. {d!, d,} are the creation and annihilation operators at site in the metal. The
Hamiltonian of the metal is similar to Eq. 6, except that the on-site potential, hopping
parameters and lattice coordination corresponds to that of the metal.

3 Defects

Having described the system, model and method, we now consider the effect of two types
of defects on transport. The effect of weak uniform disorder on the localization length
of nanotubes was first considered in reference [7], within the context of a two band
model by calculating the elastic mean free path and relating the mean free path to the
localization length. Reference [9] independently calculated the transmission probability
through disordered nanotubes of varying lengths connected to disorder free semi-infinite
carbon nanotube leads. Weak uniform disorder is herein modeled by randomly changing
the on-site potential of the atoms, ¢; — €; + d¢; in Eq. (6), where J¢; is randomly
chosen from the interval %|€,4nd0m | at all lattice points. A larger |€random| 1Mplies larger
disorder.

10

8 | \ //

\ L

o i
1

4 0 .
O 06 0.7 038
n 6 k
g_) ’J lmw'] ",, #ll
A R kAT
5 Wi ﬁ*,,
z .l £ |
< |
= | e 0.00eV
| ‘ - - 0.25eV
DOTS 1.75 eV
2 |
| e erdd ot
“' b H‘}‘;?\ .“ d "-i_.’; " F I 2
0 ’ { r.ullid.ll..d:. n R
0.0 0.5 1.0 1.5

ENERGY (eV)

Figure 2: Transmission probability versus energy of a (10,10) nanotube with disorder distributed over a
length of 1000 A. The significant features here are the robustness of the transmission probability around
the zero of eneryy as the strength of disorder is increased and the dip in transmission probability at
enerygies close to the beginning of the second sub-band. 'T he inset shows encrgy versus wave vector for
the first (solid) and the second sub-band (dashed); the velocity of electrons at the minima of the solid
line is zero. (From reference [9].)

Fig. 2 is a plot of the transmission probability versus energy for three different
values of disorder. There are three main points that we want to convey here. The
first is the insensitivity of the transmission probability to disorder at energies close to
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the band center, where only two sub-bands are present. Ve randon| = 0.25€1° results in
an insignificant reflection probability. A large value of |€random| = 1.75€1” causes more
reflection but insufficient to change the transmission drastically at the band center. The
reason for this robustness is that electrons in a CNT can find transmission paths around
defects because of the large number of atoms in a cross section. And, importantly
they result in only two modes at the band center into which electrons can reflect. If
this intuitive explanation is correct, we would expect that for a given |€;undom|, the
transtnission should depend on the radius of the tube. That is, with increasing number
of atoms along the circumference of the tube, the transmission should increase. In Fig.
3, we show that this is indeed the case by comparing the transmission of (10,10), (5,5)
and (12,0)-zigzag tubes, each with a 1000 A disordered region. The diameters of these
tubes are 13.4 A, 9.4 1 and 6.7 A respectively. For the (10,10) and (5,5) tubes, the band
structure at energies close to the Fermi energy are similar [20]. However, the number
of atoms in a unit cell of a (5,5) tube is only half of that of a (10,10) tube (20 and 40
atoms, respectively). The important point here is that although the transmission of
disorder-free (10,10) and (5,5) tubes at energies around the band center are identical,
transmission is smaller for the (5,3) tube in the presence of disorder. The (12,0) zigzag
tube has a diameter between that of the (10,10) and (5,5) tubes. Correspondingly, the
average transmission is between the values of the (10,10) and (5,5) tubes. Reference
[8], using analytical expressions addresses the reason for small reflection at the band
center.

The second point we wish to make about Fig. 2 concerns localization. We have
caleulated conductance as a function of the length of the disordered region. For dis-
ordered regions larger than the localization length (Lo), the conductance of any quasi
one dimensional structure has been predicted to decrease exponentially with length,
g = go exp(—L/Lg), in the phase coherent limit [21]. For lengths shorter than the
localization length, the decrease in conductance is not given by this relation. We ob-
serve this to be the case in Fig. 1. The inset of Fig. 4 shows that the conductance
does change exponentially with length for disordered regions larger than Lg. The value
of Ly corresponding to disorder strengths of 1eV and 1.75¢V are 3353 A and 1383 A
respectively. We note that in Fig. 4 the conductance of a micron long (10,10) nanotube
with |€andom] = 0.25eV is large, approximately 1.56—:.

The third point we want to convey is the large decrease in transmission probability
at energies where many sub-bands are present, and especially the dip in transmission
probability corresponding to the opening of a new sub-band. The origin of this dip in
transmission probability is the low velocity electrons in the second sub-band (inset of
Fig. 2) and can be explained as follows. In a perfect lattice, the velocity (dE/dk) of
electrons in the second sub-band and with an encrgy close to the minimum is nearly
zoro.  These low-velocity electrons are easily reflected by the smallest of disorders.
Disorder causes mixing of the first and second sub-bands. As a result, electrons incident
in either sub-band at these energies have a large reflection coeflicient (in comparison
to electrons with energies close to the band center). Increasing the disorder strength
results in further reduction of the conductance and also results in the broadening of
the dip. -\ dip in transmission probability at the formation of new sub-bands was also
found in in reference [22], in their study ol guasi one dimensional wires. At cnergles
away from the band center, many sub-bands exist. As a result, an clectron incident at
these energies has many sub-bands into which it can reflect. This accompanied by the
large reflection due to low velocity states at sub-band openings leads to a transmission
probability that is greatly diminshed in comparison to that at low energies, where there
are only two sub-bands (Fig. 2). For example, in Fig. 2, the transmission probability
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Figure 3: Average transmission probability at the band center versus disorder strength for wires of
different diameter. The transmission probability has been averaged over a thousand different realiza-
tions of the disorder. The main feature here is that the average transmission probability decreases
with decrease in the number of atoms along the circumference of the wire. (From reference [9].)

at E = 2l is equal to 10 in a disorder-free (10,10) nanotube, while even a small
|€ random| = 0.25€V" reduces this to a about 6 or 7.

Although transmission through CNTs is relatively insensitive to weak-disorder type
defects, there may be other type of defects that are capable of changing the transmission
probability more dramatically at the band center. We consider one such defect type
below.

Strong isolated defects (defined to be lattice locations onto which an electron
cannot hop) are isolated due to a cither a large mismatch in the on-site potential or
weak bonds with neighbors. It was shown in reference [23] that scattering from a single
such defect causes a maximum reduction in the transmission probability at the band
center E=0. The transmission probability of a 1000 A long (10,10) nanotube with ten
defects scattered randomly along the length is plotted in Fig. 5. The main point is
that independent of the exact location of these defects, a transmission gap opens at the
center of the band as the number of defects is increased. The width of the transmission
gap increases with the increase in defect density [9]. The transmission probability also
decreases sharply at energies corresponding to the opening of the second sub-band,
although this effect is weak compared to that due to weak uniform disorder. While
there is as yet no experimental evidence for such strong scattering, we expect that
when the Fermi energy is close to =0, the low bias conductance will be small in the
presence of such defects [9].
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Figure 4: Conductance versus length of the (10,10) CNT. While for the large disorder strengths, the
conductance is significantly affected by disorder, the conductance is reasonably large for the smaller
values of disorder. This demonstrates the robustness of these wires to weak uniform disorder at energies
close to the band center. Inset: log(Conductance) versus length for disorder strength of 1.75eV, in a
(5,5) CNT. The solid line/filled circle corresponds to the simulation and the dashed line/empty circle
corresponds to that obtained using y = goexp(—L/Lo). (From reference 9]

4 Transport through a polyhedral cap

The discnssion of transport through capped nanotubes is restricted to armchair tubes
with polyhedral caps. The discussion closely follows our work in reference [14]. The
main issues we address here are: (i) the relationship between the LDOS and the trans-
mission probability through cap atoms in a defect free CNT, (i1) the effect of the
localized discrete energy levels in the cap, and (iii) the effect of defects on tunnel cur-
rent/transmission.

The transmission probability and LDOS are calculated for a (10,10) nanotube with
a polvhedral cap (Fig. 6). This cap has a five-fold symmetry, with one pentagon at
the cap center and five pentagons placed symmetrically around it. The geometry is the
same as in Fig. 1 but with the metal contact at the center absent. The transmission
probability is calculated from the substrate to the semi-infinite nanotube lead at the
right hand side of Fig. 1 (without the metal contact at the center). We assune only a
single atom in the cap makes contact with the substrate. The atom making contact is
shown circled in Fig. 6. The contact is modeled by an energy independent self-energy
[in Bgs. (1) and (2)], 5. Within the context of a single parameter tight binding
[Tamiltonian, the polvhedral cap has localized states (with an infinite life-time) that
decay into the nanotube [10]. Coupling of the cap to the substrate causes hybridization
between the substrate states, nanotube continunm states and localized states of the
polvhedral cap. This hybridization transforms the localized states into quasi-localized

i
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Figure 5: Transmission probability versus energy of a (10,10) CNT with ten strong isolated scatterers
sprinkled randomly along a length of 1000 A. The main prediction here is the opening of a gap in the
transmission probability around the zero of energy. The transmission probability of a defect-free tube
is shown in Fig. 2. (From reference [9].)

states (finite life-time).

The density of states averaged over the cap and over unit cells at various distances
away from the cap is shown in Fig. 7. The distance is measured in terms of the
number of unit cell lengths of the (10,10) nanotube. In Fig. 7, there are two localized
states in the energy range considered, one around 0.25 eV and the other around -1.5
eV. The transmission probability (Fig. 8) corresponds directly to the LDOS at most
energies. The major difference is near the localized state energy, where the LDOS peaks
corresponds to transmission zeroes. The solid line in Fig. 8 is for X5 = ¢ - 0.25eV, a
purely imaginary number, which corresponds to a smooth antiresonance. However,
when the cap makes contact to the substrate T% would in general also have a real part.
The dashed curve in Fig. 8 corresponds to £% = 0.25 + i - 0.25eV. This curve retains
the anti-resonance feature, but the shape has changed as a result of the non zero real
part, which is consistent with earlier calculations in quantum wires with stubs [2].
The transmission dip arises from hybridization of localized and continuum states via
coupling to the substrate, in a manner akin to Fano resonances [25]. States in the
CNT cap comprise localized (¢) and continnum (¢c) states that are uncoupled to
each other. Bringing the substrate in close proximity to the cap couples ¢, and o¢
to the substrate states (¢g). As a result, electrons can be transmitted from ¢g to o¢
cither directly (¢s — é¢), through the localized states (ps = ¢ — ¢s — o), and
through higher order interactions. The interference between these paths gives rise to
the transmission antiresonances.

We now consider changes to the antiresonance picture due to defects ina tube. A\
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Figure 6: (10,10) carbon nanotube with a polyhedral cap. The dashed lines connect equivalent sites of
the cap and nanotube in this two dimensional representation. The dashed box shows a bond rotation
defect (From reference [14].)

defect locally mediates mixing/hybridization of localized and continuum states. This
leads to transmission paths similar to a double barrier resonant tunneling structure,
where the two scattering centers provide coupling between the substrate, the nanotube
localized state and the defect. In addition, the paths leading to the transmission an-
tiresonance discussed previously also exist, and are accounted in the model.

To demonstrate the effects of defects on transmission through a polyhedral cap,
we consider a topological bond rotation defect (box in Fig. 6) [26]. The LDOS remains
similar to Fig. 7 but in comparison to Fig. 8, the transinission probability has changed
significantly around the localized energy levels as shown in Fig. 9. Resonant peaks
appear in the transmission probability. The resonance width here is determined by
two contributions: hybridization of the localized and continuum cap states due to the
substrate and the distance of defect from the cap. In particular, the second contribution
depends on | < @¢|Haofectl@r > |, where Hyepeer 18 Hamiltonian of the defect. |¢.|?
(or the density of states of the localized state) decays with distance away from the
cap. As a result, the width of the transmission resonance depends on location of the
defect. Fig. 9 shows the transmission for two different distances of the defect from
the cap (Lp): Lp =7 and L, = 15, where Ly 1s in units of the one dimensional unit
cell length of armchair tubes. The main feature in Fig. 9 is that the transmission
resonance width becomes smaller as distance of the defect from the cap increases. This
can be understood from the fact that the strength of hybridization between continuum
and localized states in the cap caused by the defeet (| < G| Haepect| 1, > |) decreases as
distance of the defect increases from the cap. Tn terms of the enrrent carrying capacity,
clearly from Fig. 9, the resonant state is capable of carrying a large current per unit
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Figure 7: The bottom-most curve is the DOS averaged over all atoms in the cap. The quasi-localized
level is strongly peaked. Other curves represent the DOS averaged over a unit cell of the armchair
tube at varying distances from the cap. The curves have been displaced by multiples of 0.025 along the
y-axis. The circled site in Fig. 6 makes contact to the substrate with coupling strength X5 =i-0.25eV

energy compared to that of the background energies®

5 Conclusions

Two aspects of single particle transport through carbon nanotube wires were reviewed.
In section 3, calculations of the transmission probability through carbon nanotube wires
with simple defect models were discussed [9]. It was shown that carbon nanotube wires
with weak uniform disorder are relatively insensitive to back scattering at energies where
only the crossing bands (close to E=0) contribute to transport. The localization length
of nanotube wires calculated in references[7, 9, 27 is large, implying that nanotubes
are good molecular wires. The reflection probability at energies away from the band
center (where many sub-bands coexist) is much larger. At cnergies corresponding to the
opening of new sub-bands, coupling of high and low velocity states causes a dip in the
transmission, which should be observable in experiments where the Fermi energy can
be tuned. The transmission probability through nanotube wires with strong scatterers
were also calculated. These structures show a transmission gap around E=0, whose
width increases with the number of defects.

Transport experiments have demonstrated that carbon nanotubes are excellent

a15 addition to the transmission resonance around 0.25¢1, there is a new narrow resonance around
0.5¢V in Fig. 6. This new resonance is due to quasi-localized states associalted with the bond rotation
defect. This is discussed further in reference [1-4].
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Figure 8: The transmission probability corresponds to the LDOS at most energies except at the peaks
in Fig. 7. Around these energies, there is a transmission antiresonance.

metallic molecular wires, having allayed to a large extent the concerns of large contact
resistance and the effect of deformation due to coupling with the substrate [5, 6, 28, 29).
While carbon nanotube wires are still far away from real applications in nanoelectronics,
they are a good test bed for experiments in both molecular electronics and the basic
study of physics in quasi one dimensional systems with electron-electron interactions
[29, 30, 31]. These comments would be incomplete without pointing out that references
(5] and [6] measure conductances that are very close to integer multiples of %—‘?, instead

of integer multiples of 32—2 that a simple mode counting picture would yield. An open
question is if this phenomenon is particular only to these experiments [5, 6] or is it
more universal. In any case, a simple and clear explanation of this does not exist at
present in the literature.

The second aspect, disussed in section 4 dealt with transport throngh armchair
nanotube wires with polyhedral caps. Localized and continuum energy levels have
been shown to coexist [10, 14]. In comparison, asymmetric caps in general lead to
quasi-localized states as opposed to localized states, as shown in references [11, 12, 13].
The transmission probabilty from the substrate to an atom in the cap and into the
nanotube continuum states follows the LDOS of the atom. The one exception to this
is at the energy of the localized states. At this energy, while the I.DOS is peaked, the
transmission probability exhibits an antiresonance with minimum equal to zero [14]. A
defect in the tube causes hybridization between the continm and localized levels. As
a result, scattering due to defects in the tube can transform this sharp antiresonance
to a transmission resonance due to new interference paths, similar to the behavior of a
structure with two scattering centers. The current carrying capacity of this resonance
is however sensitive to the position of the defect in the tube. This makes sense because
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the hybridization between the continuum and localized levels becomes weaker with an
increase in the distance of the defect from the cap.
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